机器学习:开启智能创新之门

导读: 人工智能大师西蒙曾说过:“学习就是系统在不断重复的工作中对本身能力的增强或者改进,使得系统在下一次执行同样任务或类似任务时,会比现在做得更好或效率更高。”

一、机器学习的发展背景:人工智能

人工智能(Artificial Intelligence,缩写为AI)是对人的意识、思维过程进行模拟的一门新学科。如今,人工智能从虚无缥缈的科学幻想变成了现实。计算机科学家们在人工智能的技术核心--机器学习(Machine Learning)和深度学习(Deep Learning)领域上已经取得重大的突破,机器被赋予强大的认知和预测能力。回顾历史,在1997年,IBM“深蓝”战胜国际象棋冠军卡斯帕罗夫;在2011年,具备机器学习能力的IBM Waston参加综艺节目赢得100万美金;在2016年,利用深度学习训练的Aplphago成功击败人类世界冠军。种种事件表明机器也可以像人类一样思考,甚至比人类做得更好。

目前,人工智能在金融、医疗、制造等行业得到了广泛应用,全球投资从2012年的5.89亿美元猛增至2016年50多亿美元。麦肯锡预计,到2025年人工智能应用市场的总值将达到1270亿美元。与此同时,麦肯锡通过对2016年人工智能市场的投资进行深入分析,发现有将近60%的资金并购围绕机器学习来布局。其中,基于软件的机器学习初创公司比基于机器的机器人公司更受投资欢迎。从2013 年到2016 年,这一领域的投资复合年均增长率达到约80%。由此可见,机器学习已经成为目前人工智能技术发展的主要方向。

二、机器学习与人工智能、深度学习的关系

在介绍机器学习之前,先需要对人工智能、机器学习和深度学习三者之间的关系进行梳理。目前业界最常见的划分是:

人工智能是使用与传统计算机系统完全不同的工作模式,它可以依据通用的学习策略,读取海量的“大数据”,并从中发现规律、联系和洞见,因此人工智能能够根据新数据自动调整,而无需重设程序。

机器学习是人工智能研究的核心技术,在大数据的支撑下,通过各种算法让机器对数据进行深层次的统计分析以进行“自学”;利用机器学习,人工智能系统获得了归纳推理和决策能力;而深度学习更将这一能力推向了更高的层次。

深度学习则是机器学习算法的一种,隶属于人工神经网络体系,现在很多应用领域中性能最佳的机器学习都是基于模仿人类大脑结构的神经网络设计而来的,这些计算机系统能够完全自主地学习、发现并应用规则。相比较其他方法,在解决更复杂的问题上表现更优异,深度学习是可以帮助机器实现“独立思考”的一种方式。

总而言之,人工智能是社会发展的重要推动力,而机器学习,尤其是深度学习技术就是人工智能发展的核心,它们三者之间是包含与被包含的关系。

三、机器学习:实现人工智能的高效方法

从广义上来说,机器学习是一种能够赋予机器学习的能力以此让它完成直接编程无法完成的功能的方法。但从实践的意义上来说,机器学习是一种通过利用数据,训练出模型,然后使用模型预测的一种方法。国外有些学者对机器学习进行了定义大同小异,有学者认为,机器学习是对能通过经验自动改进的计算机算法的研究;也有学者认为,机器学习是指利用数据或以往的经验,以此优化计算机程序的性能标准。由此可知,机器学习是通过经验或数据来改进算法的研究,通过算法让机器从大量历史数据中学习规律,得到某种模式并利用此模型预测未来,机器在学习的过程中,处理的数据越多,预测结果就越精准。

机器学习在人工智能的研究中具有十分重要的地位。它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。从20世纪50年代人们就开始了对机器学习的研究,从最初的基于神经元模型以及函数逼近论的方法研究,到以符号演算为基础的规则学习和决策树学习的产生,以及之后的认知心理学中归纳、解释、类比等概念的引入,至最新的计算学习理论和统计学习的兴起,机器学习一直都在相关学科的实践应用中起着主导作用。现在已取得了不少成就,并分化出许多研究方向,主要有符号学习、连接学习和统计学习等。

四、深度学习:机器学习的更高智能进阶

2006年,加拿大多伦多大学教授、机器学习领域的泰斗Geoffrey Hinton和学生Salakhutdinov在Science上发表文章 《Reducing the Dimensionalitg of Data with Neural Neworks》,这篇文章有两个主要观点:1)多隐层神经网络有更厉害的学习能力,可以表达更多特征来描述对象;2)训练深度神经网络时,可通过降维(pre-training)来实现,老教授设计出来的Autoencoder网络能够快速找到好的全局最优点,采用无监督的方法先分开对每层网络进行训练,然后再来微调。该文章的发表翻开了深度学习的新篇章。2013年4月,深度学习技术被《麻省理工学院技术评论》(MIT TechnologyReview)杂志列为2013年十大突破性技术(Breakthrough Technology) 之首。与浅层学习模型依赖人工经验不同,深层学习模型通过构建机器学习模型和海量的训练数据,来学习更有用的特征,从而最终提升分类或预测的准确性。

五:机器学习的未来:挑战与机遇并存

机器学习是人工智能应用的又一重要研究领域。当今,尽管在机器学习领域已经取得重大技术进展,但就目前机器学习发展现状而言,自主学习能力还十分有限,还不具备类似人那样的学习能力,同时机器学习的发展也面临着巨大的挑战,诸如泛化能力、速度、可理解性以及数据利用能力等技术性难关必须克服。但令人可喜的是,在某些复杂的类人神经分析算法的开发领域,计算机专家已经取得了很大进展,人们已经可以开发出许多自主性的算法和模型让机器展现出高效的学习能力。对机器学习的进一步深入研究,势必推动人工智能技术的深化应用与发展。


详情链接:https://mp.weixin.qq.com/s/kj70R2FRy7Zq_j7aT6tBGQ

CLOSE